The Monoidal Structure of Strictification
نویسنده
چکیده
We study the monoidal structure of the standard strictification functor st : Bicat → 2Cat. In doing so, we construct monoidal structures on the 2-category whose objects are bicategories and on the 2-category whose objects are 2-categories.
منابع مشابه
Strictification of Categories Weakly Enriched in Symmetric Monoidal Categories
We offer two proofs that categories weakly enriched over symmetric monoidal categories can be strictified to categories enriched in permutative categories. This is a ”many 0-cells” version of the strictification of bimonoidal categories to strict ones.
متن کاملCoherence for Categorified Operadic Theories
Given an algebraic theory which can be described by a (possibly symmetric) operad P , we propose a definition of the weakening (or categorification) of the theory, in which equations that hold strictly for P -algebras hold only up to coherent isomorphism. This generalizes the theories of monoidal categories and symmetric monoidal categories, and several related notions defined in the literature...
متن کاملar X iv : 0 90 5 . 30 10 v 1 [ qu an t - ph ] 1 9 M ay 2 00 9 1 Categories for the practising physicist
In this chapter we survey some particular topics in category theory in a somewhat unconventional manner. Our main focus will be on monoidal categories, mostly symmetric ones, for which we propose a physical interpretation. Special attention is given to the category which has finite dimensional Hilbert spaces as objects, linear maps as morphisms, and the tensor product as its monoidal structure ...
متن کاملCategories for the practising physicist
In this chapter we survey some particular topics in category theory in a somewhat unconventional manner. Our main focus will be on monoidal categories, mainly symmetric ones, for which we propose a physical interpretation. Special attention is given to the category of sets and relations, posetal categories, diagrammatic calculi, strictification, compact categories, biproduct categories and abst...
متن کاملThe symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کامل